Inhibition of HPV-16 E6/E7 immortalization of normal keratinocytes by hairpin ribozymes.
نویسندگان
چکیده
HPV-16 E6 and E7 genes are required to efficiently immortalize a broad spectrum of cell types including cervical keratinocytes. Therefore, the E6/E7 genes can be considered relevant targets for anti-cancer therapy. We produced several engineered hairpin (HP) ribozymes to specifically disrupt HPV-16 E6/E7 mRNA. After extensive biochemical characterization, one anti-E6 HP ribozyme (R434) was selected for in vivo testing because of its superior catalytic capabilities. When expressed in cis, R434 efficiently inhibited E6 in vitro translation. Cis-expression of the HP ribozyme with HPV-16 E6/E7 genes in normal human keratinocytes reduced the growth rate and prevented immortalization. RNA analysis by reverse transcription-PCR showed that E6/E7 transcripts were cleaved in post-transfected cells and virtually were eliminated after long term expression. Of interest, an inactive version of the HP also was able to significantly affect the immortalizing ability of E6/E7, probably through passive hybridization. The combination of passive and cleaving antisense RNA therefore is established as an effective inhibitor of HPV-16 E6/E7 immortalization.
منابع مشابه
HPV-16 E7 protein bypasses keratinocyte growth inhibition by serum and calcium.
The E6 and E7 genes of HPV-16 or HPV-18 both are necessary for effective immortalization of primary human genital keratinocytes. To analyse the individual role of E6 and E7 genes in dysregulating cell growth, we cloned the HPV-16 E6, E7 and E6/E7 genes into retroviruses. Primary human keratinocytes (PHK) were then infected with these retroviruses and selected in differentiation-inducing medium ...
متن کاملBmi-1 cooperates with human papillomavirus type 16 E6 to immortalize normal human oral keratinocytes.
Bmi-1 is a member of the polycomb group (PcG) transcription repressors and is implicated in human carcinogenesis. In normal human oral keratinocytes (NHOK), we found that exogenous Bmi-1 expression significantly extended the replicative life span without causing cellular immortalization. Immortalization of NHOK occurs only in combination with human papillomavirus type 16 E6 (HPV-16 E6) but not ...
متن کاملHPV 16 E6/7 immortalization sensitizes human keratinocytes to UVB by altering the pathway from caspase-8 to caspase-9-dependent apoptosis
UVB from solar radiation is both an initiating and promoting agent for skin cancer. We have found that primary human keratinocytes undergo an apoptotic response to UVB. To determine if these responses are altered during the course of immortalization, we examined markers of apoptosis in primary human foreskin keratinocytes (HFK) transduced with either a retroviral vector expressing the E6 and E7...
متن کاملMutant p53 can substitute for human papillomavirus type 16 E6 in immortalization of human keratinocytes but does not have E6-associated trans-activation or transforming activity.
Human papillomavirus type 16 (HPV16) E6 and E7 are selectively retained and expressed in HPV16-associated human genital tumors. E6 is active in several cell culture assays, including transformation of NIH 3T3 cells, trans activation of the adenovirus E2 promoter, and cooperation with E7 to immortalize normal human keratinocytes. Biochemically, the HPV16 E6 protein has been shown to bind to tumo...
متن کاملTranscriptional activation of the telomerase hTERT gene by human papillomavirus type 16 E6 oncoprotein.
The E6 and E7 oncogenes of human papillomavirus type 16 (HPV-16) are sufficient for the immortalization of human genital keratinocytes in vitro. The products of these viral genes associate with p53 and pRb tumor suppressor proteins, respectively, and interfere with their normal growth-regulatory functions. The HPV-16 E6 protein has also been shown to increase the telomerase enzyme activity in p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 95 3 شماره
صفحات -
تاریخ انتشار 1998